1. **INFINITARY COMBINATORICS**[6, 14, 15, 17, 19]

 (a) Definition of a Δ-system, statement and proof of the Δ-system lemma.

 (b) Statement of MA (Martin’s Axiom) and MA_κ, proof that MA_ω holds and MA_ω fails.

 (c) Definition of a club and a stationary subset of κ, of the club filter and proof that the club filter on a regular cardinal κ is κ-complete.

 (d) Statement and proof of the Pressing Down Lemma.

 i. An application: Statement and proof of Thomas’s theorem on automorphism towers of centreless groups.

 (e) Statement of \Diamond (the Diamond Axiom) and \clubsuit (the Club Axiom).

 (f) Trees

 i. Statement and proof of König’s Lemma.

 ii. Definition of a κ-tree, a κ-Aronszajn tree and a κ^+-Kurepa tree.

 iii. Proof of existence of an ω_1-Aronszajn tree.

 iv. Definition of a κ-Suslin tree, proof that κ-Suslin implies κ-Aronszajn.

 v. Definition of a Suslin line and of Suslin’s hypothesis SH, proof that the existence of a Suslin tree is equivalent to the existence of a Suslin Line.

 vi. MA_ω implies that there is no ω_1-Suslin tree.

 vii. \Diamond implies existence of a Suslin Tree.

 (g) Definition of $\text{Def}(X)$ (Definable subsets of a set X), the constructible hierarchy, definition of L, the Axiom of Constructibility $\text{V} = \text{L}$.

 (h) Statement only: $\text{L} \models \text{V} = \text{L}$, $\text{V} = \text{L}$ implies that there is a definable well-order of the universe; the Condensation Lemma.

 (i) $\text{L} \models \text{AC} + \text{GCH}$, $\text{L} \not\models \Diamond$.

2. **LARGE CARDINALS**[6, 14, 16]

 (a) Definition of a weakly inaccessible and a strongly inaccessible cardinal.

 (b) If κ is a strongly inaccessible cardinal, then $V_\kappa = H(\kappa) \models \text{ZFC}$.

 (c) The existence of a weakly inaccessible cardinal is equiconsistent with that of a strongly inaccessible one, which in turn has consistency strength strictly greater than that of ZFC.

 (d) Definition of measurable cardinals, proof that measurable cardinals are strongly inaccessible.

 (e) Proof that κ is a measurable cardinal iff there exists a nontrivial elementary embedding $j : V \rightarrow M$, with critical point κ, into some transitive class M.

 (f) If there exists a measurable cardinal then $V \neq \text{L}$.

 (g) Definition of a supercompact cardinal and characterization in terms of elementary embeddings.

 (h) Definition of a Reinhardt cardinal, proof of the nonexistence of such cardinals (Kunen’s inconsistency).
3. **FORCING**[1, 2, 3, 7, 8, 9, 13, 14, 17, 18, 21]

(a) Definitions of P-generic filter, the forcing language, the forcing relation, antichains, nice name, dense below p, predense, the κ-c.c., the Knaster condition, separative and non-atomic partial orders, λ-closed, complete embedding, dense embedding.

(b) Proof that κ-c.c. forcing notions preserve cofinalities and cardinals $\geq \kappa$ and κ-closed ones preserve cofinalities and cardinals $\leq \kappa$.

(c) Definition of strategically σ-closed forcing notion, proof that such notions don’t add reals.

(d) Cohen forcing
 i. Proof of the consistency of $\neg\text{CH}$.
 ii. How to use forcing to obtain a model of $\neg\text{AC}$.
 iii. Every countable forcing notion is equivalent to adding a Cohen real.
 iv. In Cohen’s model, $\omega_1 = a$ and $\delta = c$.
 v. Proof that in Cohen’s model, Borel’s conjecture does not hold.
 vi. Statement of the dual Borel’s conjecture, proof that in Cohen’s model the dual Borel conjecture holds.

(e) How to force CH, and $\check{\Diamond}$.

(f) The Lévy collapse.

(g) Forcing with a Suslin tree destroys its Suslinness.

(h) Namba forcing.

(i) Tree Prikry forcing.

(j) Iterated Forcing.
 i. Definitions: α-stage iteration, direct limit, inverse limit, finite support iteration, countable support iteration.
 ii. The finite support iteration of Cohen forcings is forcing equivalent to the finite support product of Cohen forcings.
 iii. Finite support iterations add Cohen reals at limit stages.
 iv. Proof of the consistency of $\text{MA} + \neg\text{CH}$.

(k) Proper Forcing.
 i. Definition of an (M, P)-generic condition, and some equivalences.
 ii. Definition of a proper forcing notion.
 iii. Countably closed forcing notions and c.c.c. forcing notions are proper.
 iv. Proper forcing notions preserve stationary subsets of $[\lambda]^{<\omega_1}$ for $\lambda \geq \omega_1$.
 v. The covering property for proper forcing notions (every new countable set of ordinals is covered by an old one).
 vi. Sacks forcing, Mathias forcing, Laver forcing, Miller forcing and Grigorieff forcing are proper.
 vii. Proof of the preservation theorem: countable support iterations of proper forcings are proper.
 viii. An application: a model where Borel’s conjecture holds.
 ix. Another application: a model with no P-points.

(l) Statement of the Proper Forcing Axiom PFA.

4. **CARDINAL INVARIANTS**[4, 12, 20]

(a) Definitions of an unbounded, dominating, centred, AD and MAD family; definition of a scale, a pseudo-intersection, a tower.

(b) Definitions of a, b, d, p, t, m and variations of m.

(c) Proof that $\omega_1 \leq m \leq m(\sigma-\text{centred}) \leq p \leq t \leq b \leq d \leq c$, proof that $b \leq a$.

(d) Proof that there exists a scale iff $b = d$.

(e) Proof that t and b are regular, and $\text{cf}(d) \geq b$.
(f) Proof of Rothberger’s theorem that $p = \omega_1$ implies $p = t$.

(g) $\text{cov}(\mathcal{M}) = m(\text{countable}) = m(\text{Cohen})$.

(h) $p = m(\sigma-$centred), and p is regular.

5. ULTRAFILTERS ON SEMIGROUPS[2, 5, 10, 11]

(a) Definition of filter, ultrafilter.

(b) Definition of a P-point, a Q-point, a selective (or Ramsey) ultrafilter and some characterizations of these.

(c) $\mathfrak{d} = \mathfrak{c}$ implies that there are P-points.

(d) The Stone-Čech compactification of ω.
 i. The topology of $\beta\omega$.
 ii. Characterization of open and closed subsets of $\beta\omega$ as ideals and filters, respectively. The clopen subsets of $\beta\omega$.
 iii. $\beta\omega$ is compact Hausdorff, extremally disconnected, zero-dimensional and of cardinality 2^{2^ω}.
 iv. The extension property, extension of a semigroup operation.
 v. P-points are points of continuity of the function $q + ()$ for any $q \in \beta\omega$.

(e) The semigroup $\beta\omega$.
 i. The Ellis-Nukamura lemma.
 ii. Hindman’s finite sums theorem.
 iii. Definition of strongly summable and of weakly summable ultrafilters.
 iv. On abelian groups, strongly summable implies idempotent, which in turn implies weakly summable.
 v. Definition of a union ultrafilter.
 vi. Definition of an additive isomorphism between ultrafilters.
 vii. Every strongly summable ultrafilter on $(\omega, +)$ is additively isomorphic to a union ultrafilter, and vice versa.
 viii. Definition of sparse strongly summable ultrafilters.
 ix. MA implies the existence of sparse strongly summable ultrafilters over any abelian group.

References

MBBS Syllabus has been prescribed by MCI. Candidates can check MBBS syllabus, subjects and topics covered, renewal of syllabus of MBBS and other details here. MBBS Syllabus - Medicine Subjects Phase wise details. The Medical aspirants can refer to the table below, for a better understanding of how the course duration is divided into phases. Phases of MBBS Syllabus. Otorhinolaryngology. Oral cavity and oropharynx, Ear, Instruments, Operative Procedures, X-ray. Pediatrics. Oral discussion skills are very important and may require explicit development. Consider referral to language advising/editing services early as language is developmental and cannot simply be addressed through preliminary language courses. Language proficiency tests are entry-level only and assess types of writing that are very different to that of a research thesis. (adapted from Bryce 2003). This syllabus is specially designed for the Grade 1 and 2 primary teachers who handle Activity Based Oral English during Environmental Related Activities (ERA) in these classes. It is designed basically to assist these teachers to introduce a few English vocabulary items and structures relevant to the particular ERA theme. Grade / Theme Objectives. Activity based oral english syllabus outline. Vocabulary, Structure, Oral Pathology. IV. Dissertation completion and submission. Preliminary examination (theory and practical) to be conducted at institutional level. V. Monitoring and learning process. However a strict division of the subject may not be possible and some overlapping of the topics is inevitable. Students should be prepared to answer overlapping topics. B. PRACTICAL / CLINICAL : 200 MARKS 1. Case presentation : 30 Marks. a) Long Case b) Short Case 20 Marks 10 Marks. Documents Similar To Oral Pathology Syllabus.