Further Reading: Michael Faraday

General reading

Alan E. Jeffreys, Michael Faraday: A List of His Lectures and Published Writings, (London, 1960).

Published books by Faraday, mainly collections of papers and lecture notes, some published after his death:

Chemical Manipulation, Being Instructions to Students in Chemistry. (1827).

Experimental Researches in Electricity, Vol I, II & III (1837, 1844, 1855)

Experimental Researches in Chemistry and Physics (1859).

W. Crookes. ed. A Course of six lectures on the Various Forces of Matter (1860)

W. Crookes. ed. A Course of six lectures on the Chemical History of a Candle, (1861)

The liquefaction of gases (1896.)

Published texts by Faraday

The complete correspondence of Michael Faraday is currently being compiled. Five volumes have been published with the sixth in progress. Frank A.J.L. James, The Correspondence of Michael Faraday, (London, 1991-2008).

In-depth reading:

Henry Bence Jones, Life and Letters of Faraday, 1st and 2nd editions, 2 volumes, London, 1870

Geoffrey Cantor, 'Michael Faraday Meets the "High-Priestess of God’s Works": A Romance on the Theme of Science and Religion' in Matthew Eddy and David Knight (eds.), *Science and Beliefs: From Natural Philosophy to Natural Science, 1700-1900*, (Aldershot, 2005), pp.157-170.

David Gooding, ‘Experiment and concept formation in electromagnetic science and technology in England in the 1820s’, *History and Technology*, 1985, 2: 151-176,

Bruce J. Hunt, The Maxwellians (Ithaca, 1991)

Frank A.J.L. James, “the civil-engineer’s talent”: Michael Faraday, science, engineering and the English lighthouse service, 1836-1865’, Transactions of the Newcomen Society, 1999: 70: 153-60

José Romo and Manuel G. Doncel, ‘Faraday’s initial mistake concerning the direction of induced currents, and the manuscript of Series I of his Researches’, *Archive for the History of the Exact Sciences*, 1994, **47**: 291-385.

Sydney Ross, ‘Faraday consults the scholars: The origins of the terms of electrochemistry’, *Notes and Records of the Royal Society of London*, 1961, **16**: 187-220;

J. Brooks Spencer, ‘On the Varieties of Nineteenth-Century Magneto-Optical Discovery’, *ISIS*, 1970, **61**: 34-51

Friedrich Steinle, ‘Work, finish, publish?: the formation of the second series of Faraday’s experimental researches in electricity’, *Physia*, 1996, **33**: 141-220.

Ryan Tweney, ‘Toward a Cognitive-Historical Understanding of Michael Faraday’s Research: Editor’s Introduction’, *Perspectives on Science* 2006, **14**: 1-6,

Ryan Tweney, ‘Stopping Time: Faraday and the scientific creation of perceptual order’, *Physia*, 1992, **29**: 149-164,

Ryan Tweney, ‘Discovering Discovery: How Faraday Found the First Metallic Colloid’, *Perspectives on Science* 2006, **14**: 97-121.

MICHAEL FARADAY, the hero of James Hamilton's studious if slightly bewildering new biography, was one of the greatest experimental scientists ever. He invented the electric motor, generator and transformer -- thus, as Hamilton notes, putting "the Age of Steam . . . on notice to quit." He discovered the basics of electromagnetism, from which sprang everything from the electronics industry to Einstein's relativity. Originally Answered: When reading Maxwell, Faraday, Lord Kelvin and more recently Nikola Tesla and Richard Feynman. All of them, seem compared to other, to explain quite complex phenomena with words and without exclusively relying on mathematics why? Michael Faraday (1791-1867) was an influential British scientist who, amongst other discoveries, helped turn electricity into a property that could be easily used. "Nothing is too wonderful to be true if it be consistent with the laws of nature, and in such things as these, experiment is the best test of such consistency." Michael Faraday. Faraday's greatest achievement was in the development of electromagnetism and electricity. Though people already knew of electricity, it was Faraday who played a pivotal role in providing a continuous source of electricity. He did this through his electro-magnetic rotation model of 1821. Later he was able to develop the first electric dynamo; his theories of electromagnetism proved influential in the new electricity industry of the nineteenth century. Michael Faraday (September 22, 1791 - August 25, 1867) was an English physicist and chemist who is one of the most influential scientists of all time. His most important contributions, and best known work, were on the closely connected phenomena of electricity and magnetism, but he also made very significant contributions in chemistry. Faraday was principally an experimentalist; in fact, he has been described as the "best experimentalist in the history of science". He did not know any advanced Further Reading: Michael Faraday General reading Geoffrey Cantor, Michael Faraday: Sandemanian and Scientist. A Study of Science and Religion in the Nineteenth Century, (London, 1991). David Gooding, Experiment and the Making of Meaning: Human Agency in Scientific Observation and Experiment, (Dordrecht, 1991). David Gooding and Frank A.J.L. James (eds.), Faraday Rediscovered: Essays on the Life and Work of Michael Faraday, 1791â€”1867, (London, 1985). Frank A.J.L. James (ed.), The Common Purposes of Lifeâ€™: Science and society at the Royal Institution of Great Britain, (Aldershot, 2002). Frank A Michael Faraday was a British scientist who contributed significantly to technology used in everyday modern life. Michael Faraday's inventions include the electric motor, the transformer, the generator, the Faraday cage and several other devices. Faraday is considered the Father of Electromagnetism. TL;DR (Too Long; Didn't Read). Michael Faraday was a prolific chemist and physicist who worked in the 19th century in Great Britain. Faraday invented or developed many items and methods, including the electric motor, transformer, generator, Faraday cage and many other achievements. Why Is Michael Faraday the Father of Electricity? Because of his work, Michael Faraday is called the Father of Electricity. Many also consider him the Father of Electromagnetism.