CONTENTS

1. Introduction
 1.1 Introduction
 1.2 Aims and objectives
 1.3 Hypothesis
 1.4 Plan of work
 1.5 References

2. Literature review
 2.1 Anatomy and Physiology of Human Uterus
 2.1.1 Structure of Human Uterus
 2.1.2 Uterine Vascular system
 2.2 First Uterine Pass Effect
 2.3 Uterine Fibroids and Endometriosis
 2.3.1 Uterine Fibroids
 2.3.2 Endometriosis
 2.4 Management and Treatment of Uterine Fibroids and Endometriosis
 2.4.1 Surgical Treatment
 2.4.2 Medical Treatment
 2.4.3 Ablative Therapy
 2.5 Targeted Drug Delivery Systems
 2.5.1 Types of Targeted Drug Delivery
 2.5.1.1 Passive Targeting
 2.5.1.2 Active Targeting
 2.5.2 Carriers for Targeted Drug Delivery Systems
 2.5.2.1 Inorganic Nanoparticles
 2.5.2.2 Polymeric Micelles
 2.5.2.3 Dendrimers
 2.5.2.4 Carbon Nanotubes
 2.5.2.5 Liposomes
2.6 Vaginal Drug Delivery
 2.6.1 Mucoadhesive Formulations
 2.6.2 Mechanical Fixation
 2.6.2.1 Tablets and Discs
 2.6.2.2 Intravaginal Rings

2.7 In Vivo Biodistribution Study by Gamma Scintigraphy

2.8 Review of the past work done
 2.8.1 Review of the past work done on Leuprolide acetate
 2.8.2 Review of the past work done on Raloxifene Hydrochloride

2.9 Drug Profile
 2.9.1 Leuprolide acetate
 2.9.2 Raloxifene Hydrochloride

2.10 Excipient Profile
 2.10.1 DSPC: 1,2-Distearoyl-sn-glycero-3-phosphocholine
 2.10.2 Cholesterol

2.11 References

3. Analytical methods
 3.1 Introduction
 3.2 Materials and Equipment
 3.3 Analytical Methods for estimation of Leuprolide acetate
 3.3.1 UV-Visible Spectrophotometric Method in Distilled Water
 3.3.2 UV-Visible Spectrophotometric Method in SVF pH 4.2
 3.3.3 Method Validation
 3.3.3.1 Linearity
 3.3.3.2 Accuracy
 3.3.3.3 Precision
 3.3.3.4 LOD and LOQ
 3.3.4 Analytical Interference Study
 3.3.5 Estimation of Leuprolide acetate in Rabbit plasma using LCMS-MS method
 3.4 Analytical Methods for estimation of Raloxifene Hydrochloride
 3.4.1 UV-Visible Spectrophotometric Method in Methanol: Chloroform (1:9)
 3.4.2 UV-Visible Spectrophotometric Method in SVF pH 4.2
 3.4.3 Method Validation
3.4.3.1 Linearity
3.4.3.2 Accuracy
3.4.3.3 Precision
3.4.3.4 LOD and LOQ
3.4.4 Analytical Interference Study
3.4.5 Estimation of Raloxifene Hydrochloride in Rabbit plasma using LCMS-MS method
3.5 Analytical Method for simultaneous estimation of Leuprolide acetate and Raloxifene Hydrochloride in SVF pH 4.2
3.6 Results and Discussion
3.7 References

4. Preformulation studies and Preliminary Optimization
4.1 Introduction
4.2 Materials and Equipment
4.3 Preformulation studies
 4.3.1 Methods
 4.3.2 Results and Discussion
4.4 Preliminary Optimization of Formulation Parameters
 4.4.1 Type of Lipid
 4.4.2 Volume of Hydration media
4.5 Preliminary Optimization of Process Parameters
4.6 References

5. Formulation Development
5.1 Introduction
5.2 Materials and Equipment
5.3 Preparation and Optimization of Raloxifene Hydrochloride loaded Liposomes
 5.3.1 Preparation of liposomal formulation and optimization by Design of Experiment
 5.3.1.1 Determination of Vesicle size
 5.3.1.2 Determination of % Entrapment Efficiency
 5.3.1.3 Checkpoint analysis
 5.3.2 Results and Discussion for Formulation and Optimization of RLX-Loaded Liposomes
5.3.2.1 Statistical evaluation of results of vesicle size
5.3.2.2 Statistical evaluation of results of % EE
5.3.2.3 Results of Checkpoint Analysis

5.4 Preparation and Optimization of Leuprolide acetate loaded Liposomes
5.4.1 Preparation of liposomal formulation and optimization by Design of Experiment
 5.4.1.1 Determination of Vesicle size
 5.4.1.2 Determination of % Entrapment Efficiency
 5.4.1.3 Checkpoint analysis
5.4.2 Results and Discussion for Formulation and Optimization of LA-Loaded Liposomes
 5.4.2.1 Statistical evaluation of results of vesicle size
 5.4.2.2 Statistical evaluation of results of % EE
 5.4.2.3 Results of Checkpoint Analysis

5.5 Preparation and Optimization of dual drug loaded Liposomes
5.5.1 Preparation of liposomal formulation and optimization by Design of Experiment
 5.5.1.1 Determination of Vesicle size
 5.5.1.2 Determination of % Entrapment Efficiency
 5.5.1.3 Checkpoint analysis
5.5.2 Results and Discussion for Formulation and Optimization of RLX-LA-Loaded Liposomes
 5.5.2.1 Statistical evaluation of results of vesicle size
 5.5.2.2 Statistical evaluation of results of % EE
 5.5.2.3 Results of Checkpoint Analysis

5.6 Preparation of liposomal formulations loaded Rod Insert-Intravaginal Rings

5.7 References

6. Characterization of Formulations
6.1 Introduction
6.2 Materials and Equipment
6.3 Methods
 6.3.1 Vesicle size
 6.3.2 Zeta potential
6.3.3 % Entrapment Efficiency
6.3.4 Drug Loading (%w/w)
6.3.5 Morphological analysis by TEM and SEM
6.3.6 In Vitro Drug Release Study

6.4 Results and discussion
6.4.1 Vesicle size
6.4.2 Zeta potential
6.4.3 % Entrapment Efficiency
6.4.4 Drug Loading (%w/w)
6.4.5 Morphological analysis by TEM and SEM
6.4.6 In Vitro Drug Release
 6.4.6.1 Drug Release from Liposomal Formulations
 6.4.6.2 Drug Release from Intra Vaginal Rod Inserts

6.5 References

7. Ex Vivo Histopathology Study
 7.1 Introduction
 7.2 Materials
 7.3 Method
 7.4 Results and Discussion
 7.5 References

8. In Vitro Cell Cytotoxicity Study
 8.1 Introduction
 8.1.1 Cytotoxicity study by MTT Assay
 8.1.2 Cell Cycle Analysis and Apoptosis Study
 8.2 Materials and Equipment
 8.3 MTT Assay
 8.4 Apoptosis and Cell Cycle Analysis by FACS
 8.5 Results and Discussion
 8.5.1 Results of MTT Assay
 8.5.2 Results of Apoptosis and Cell Cycle Analysis
 8.6 References

9. In Vivo Biodistribution Study
 9.1 Introduction
9.2 Materials and Equipment

9.3 Radiolabeling of Drugs

9.3.1 Radiolabeling of Raloxifene Hydrochloride

9.3.2 Radiolabelling of Leuprolide acetate

9.4 Quality Control Tests

9.4.1 pH of the Radiolabeled Drugs

9.4.2 Determination of Radiolabeling efficiency

9.4.3 Stability of Radiolabeled Complex in serum and normal saline

9.4.4 Transchelation Study (DTPA Challenge)

9.5 Biodistribution Study

9.5.1 Biodistribution study of radiolabeled RLX loaded Liposomes

9.5.2 Biodistribution study of radiolabeled LA loaded Liposomes

9.6 Results and Discussion

9.6.1 Results of pH of the Radiolabeled Drugs

9.6.2 Results of Determination of Radiolabeling efficiency

9.6.2.1 Radiolabeling efficiency of RLX

9.6.2.2 Radiolabeling efficiency of LA

9.6.3 Results of Stability of Radiolabeled Complex in serum and normal saline

9.6.3.1 Stability of 99mTc-RLX complex

9.6.3.2 Stability of 99mTc-LA complex

9.6.4 Results of Transchelation Study (DTPA Challenge)

9.6.5 Results of Biodistribution Study

9.6.5.1 Results of Biodistribution Study of 99mTc-RLX loaded Liposomes

9.6.5.2 Results of Biodistribution Study of 99mTc-LA loaded Liposomes

9.7 References

10 In Vivo Pharmacodynamic and Pharmacokinetic Study

10.1 Introduction

10.2 Materials and Equipment

10.3 Pharmacodynamic Study

10.3.1 Induction of Uterine Fibroids in Rabbits

10.3.2 Tumour Regression analysis by Ultrasonography

10.4 Pharmacokinetic Study

10.5 Results and Discussion
10.5.1 Results of Pharmacodynamic Study

10.5.2 Results of Pharmacokinetic Study

10.6 References

11 Stability Study

11.1 Introduction

11.2 Materials and Equipment

11.3 Method

11.4 Results and Discussion

11.5 References

12 Summary and Conclusion

12.1 Summary

12.2 Conclusion
Uterine fibroids are slowly growing, solid pelvic tumors [1]. The prevalence ranges between 5.4% and 77% of women, depending on the method of diagnosis [2]. Uterine fibroids mainly originate from individual smooth muscle cells of the uterus [3]. The smooth muscle cells of the uterine blood vessels may also be a source [4]. Although benign, fibroids may have a major impact on other agents have been advocated for the treatment of uterine fibroids. Effectiveness of combined GnRH analogue plus raloxifene administration in the treatment of uterine leiomyomas: a prospective, randomized, single-blind, placebo controlled clinical trial. Hum Reprod. 2002;17:3213–9. Medications for uterine fibroids target hormones that regulate your menstrual cycle, treating symptoms such as heavy menstrual bleeding and pelvic pressure. They don't eliminate fibroids, but may shrink them. Medications include: Gonadotropin-releasing hormone (GnRH) agonists. Medications called GnRH agonists treat fibroids by blocking the production of estrogen and progesterone, putting you into a temporary menopause-like state. This technique can be effective in shrinking fibroids and relieving the symptoms they cause. Complications may occur if the blood supply to your ovaries or other organs is compromised. However, research shows that complications are similar to surgical fibroid treatments and the risk of transfusion is substantially reduced. Radiofrequency ablation. The modern advance in treatment of endometriosis management is tackling the debilitating pain it causes, besides the infertility in patients desiring fertility in reproductive age group. This can be achieved by surgical or medical means, although in most cases a combination of both treatments is required. Usually, long term treatment is required in most cases. 1.3. Management. The approaches used for the treatment of endometriosis currently involve pharmacologic therapies and surgical removal of endometriotic implants. Elagolix is an oral short acting GnRH antagonist that unlike injectable GnRH antagonists produces dose dependent suppression of pituitary and ovarian hormones in women. GnRH antagonists are analogs of the GnRH molecule that act by directly competing for and occupying pituitary GnRH receptors. This blocks access of the GnRH molecule to these receptors, resulting in immediate pituitary suppression of gonadotropin secretion. This avoidance of the initial gonadotropin flare seen with GnRH agonists allows the antagonist to cause a clinical effect much more quickly, generally within 2 weeks. Data are limited for the use of these agents in the treatment of fibroids. Most publications are case reports or small uncontrolled series. However, there is currently one randomized trial comparing the aromatase inhibitor letrozole 2.5 mg/day to GnRH agonist in the treatment of uterine fibroids (Parsanezhad et al. GnRH (LHRH) receptor antagonist, Treatment of uterine fibroids, Treatment of endometriosis-related pain, Treatment of prostate cancer. January 2019. Drugs of the Future 44(2):131. Relugolix is a nonpeptide, orally active small-molecule compound that was recently approved in Japan for the treatment of uterine fibroids. Additionally, it is in phase III trials for endometriosis and prostate cancer. Inhibition of anterior pituitary GnRH receptors results in reduction of the circulating gonadotropins luteinizing hormone and follicle-stimulating hormone, leading to the suppression of estrogen production in women and testosterone production in men.